Section 5.1 - Area Approximation Methods

1. Estimate $\int_{0}^{120} f(t) d t$ using the indicated method and number of subintervals.

t	0	20	40	60	80	100	120
$f(t)$	1.2	2.8	4.0	4.7	5.1	5.2	4.8

a. LRAM, six subintervals
b. RRAM, six subintervals
c. MRAM, three subintervals
d. TRAP, six subintervals
e. TRAP, three subintervals
f. SIMP, six subintervals
g. SIMP, three subintervals
2. Estimate $\int_{0}^{100} g(t) d t$ using the indicated method and number of subintervals.

t	0	40	70	90	100
$g(t)$	150	180	195	184	172

a. LRAM, 4 subintervals
b. RRAM, 4 subintervals
c. TRAP, 4 subintervals
3. The rate, $R(t)$ in people per hour, that people are entering a local office is given below for various times, t, in hours. $R(t)$ is decreasing on the interval $0 \leq t \leq 7$.

t	0	1	3	4	7
$R(t)$	12	7	5	2	1

a. Use a left Riemann sum with 4 subintervals to approximate the total number of people entering the office over the interval $0 \leq t \leq 7$.
b. Use a right Riemann sum with 4 subintervals to approximate the total number of people entering the office over the interval $0 \leq t \leq 7$.
c. Use a trapezoidal approximation with 4 subintervals to approximate the total number of people entering the office over the interval $0 \leq t \leq 7$.
d. Are your estimates from parts a) and b) overestimates or underestimates? Justify your answers.
4. Gasoline is being pumped into a car. The rate, $G(t)$ in gallons per second, that the gas is being pumped is given in the table below at selected times (seconds).

t	0	4	8	12	16	20	24
$G(t)$	0	.34	.42	.56	.45	.34	.22

a. Use a right Riemann Sum with 6 subintervals to approximate the total gallons of gasoline pumped in the car over the 24 seconds.
b. Use a midpoint Riemann Sum with 3 subintervals of equal size to approximate the total gallons of gasoline pumped in the car over the 24 seconds.
c. Use Simpson's Rule with 6 subintervals to approximate the total gallons of gasoline pumped in the car over the 24 seconds.

AP Calculus BC
Section 5.1 - Area Approximation Methods

1. Estimate $\int_{0}^{120} f(t) d t$ using the indicated method and number of subintervals.

t	0	20	40	60	8.0	10.0	120
$f(t)$	1.2	2.8	4.0	4.7	5.1	5.2	4.8

a. LRAM, six subintervals $20(1.2+2.8+4.0+4.7+5.1+5.2)=460$
b. RRAM, six subintervals $20(2.8+4.0+4.7+5.1+5.2+4.8)=532$
c. MRAM, three subintervals $40(2.8+4.7+5.2)=508$
d. TRAP, six subintervals $\frac{1}{2}(20)[1.2+2(2.8)+2(4)+2(4.7)+2(5.1)+2(5.2)+4.8]=496$
e. TRAP, three subintervals $\frac{1}{2}(40)[2.8+2(4,7)+5,2]=348$
f. SIMP, six subintervals $\frac{1}{3}(20)[1.2+4(2.8)+2(4.0)+4(4.2)+2(5.1)+4(5.2)+4.8]=500$
g. SIMP, three subintervals NOT POSSIBLE
2. Estimate $\int_{0}^{100} g(t) d t$ using the indicated method and number of subintervals.

t	0	40	70	90	100
$g(t)$	150	180	195	184	172

a. LRAM, 4 subintervals

$$
40(150)+30(180)+20(195)+10(184)=17,140
$$

b. RRAM, 4 subintervals

$$
40(180)+30(195)+20(184)+10(172)=18,450
$$

c. TRAP, 4 subintervals $\frac{1}{2}(40)(150+180)+\frac{1}{2}(30)(180+195)+\frac{1}{2}(200)(195+184)$

$$
+\frac{1}{2}(10)(184+172)=17,795
$$

3. The rate, $R(t)$ in people per hour, that people are entering a local office is given below for various times, t, in hours. $R(t)$ is decreasing on the interval $0 \leq t \leq 7$.

t	0	1	3	4	7
$R(t)$	12	7	5	2	1

a. Use a left Riemann sum with 4 subintervals to approximate the total number of people entering the office over the interval $0 \leq t \leq 7$.

$$
1(12)+2(7)+1(5)+3(2)=37
$$

OVERESTIMATE SIVIE

$$
R(1) \text { seceerione. }
$$

b. Use a right Riemann sum with 4 subintervals to approximate the total number of people entering the office over the interval $0 \leq t \leq 7$.

$$
1(7)+2(5)+1(2)+3(1)=22
$$

UVDERESTHWATE SBLE
PLE is sucReASING.
c. Use a trapezoidal approximation with 4 subintervals to approximate the total number of people entering the office over the interval $0 \leq t \leq 7$.

$$
\frac{1}{2}(1)(12+7)+\frac{1}{2}(2)(7+5)+\frac{1}{2}(1)(5+2)+\frac{1}{2}(3)(2+1)=29.5
$$

d. Are your estimates from parts a) and b) overestimates or underestimates? Justify your answers.

SEE ABOVE.

4. Gasoline is being pumped into a car. The rate, $G(t)$ in gallons per second, that the gas is being pumped is given in the table below at selected times (seconds).

t	0	4	8	12	16	20	24
$G(t)$	0	$.34)$.42	.56	.45	$(.34)$.22

a. Use a right Riemann Sum with 6 subintervals to approximate the total gallons of gasoline pumped in the car over the 24 seconds.

$$
4(.34+.42+.56+.45+.34+.22)=9.32
$$

b. Use a midpoint Riemann Sum with 3 subintervals of equal size to approximate the total gallons of gasoline pumped in the car over the 24 seconds.

$$
8(.34+.56+.34)=9.92
$$

c. Use Simpson's Rule with 6 subintervals to approximate the total gallons of gasoline pumped in the car over the 24 seconds.

$$
\begin{array}{r}
\frac{1}{3}(4)(0+4(.34)+2(42)+4(.56)+2(.45)+4(.34)+.22)=9.226 \\
9.227
\end{array}
$$

